AGENDA

9:00	(Bob Bea)
9:15	PROJECT PLAN REVIEW AND UPDATE (Bob Bea)
10:00	BREAK
10:15	PROJECT PROGRESS AND STATUS (Mehrdad Mortazavi)
11:30	DISCUSSION
12:00	LUNCH
1:00	VERIFICATION CASE STUDIES (Ken Loch & Mehrdad Mortazavi)
2:30	A COMPARISON OF LEVELS 2, 3 AND 4 OF SCREENING (Peter Young)
3:00	DISCUSSION / BREAK
3:15	SOFTWARE DEMONSTRATION (Mehrdad Mortazavi)
3:45	PLANS FOR NEXT 6 MONTHS & MEETING
4:00	DISCUSSION
4:30	ADJOURN

PROJECT SPONSORS

Arco Exploration and Production Technology
California State Lands Commission
Exxon Production Research Company
Mobil Research and Development Company
Shell Oil Company
Unocal Corporation

&

U. S. Minerals Management Service sponsoring associated projects:

"Verification of Screening Procedures"

&

"Dynamic Nonlinear Response In Severe Sea States"

Screening Methodologies for Use in Platform Assessments and Requalifications

PROJECT OBJECTIVE

Further develop and verify qualitative and simplified quantitative screening methodologies for platform assessments so they can be used in practice

... and develop a reliable and easy to use tool to check the results of level 3 and 4 platform analyses!!

Level 1 - 'Scoring Factors'

Level 2 - 'Limit Equilibrium'

PROJECT SCOPE REVIEW

LEVEL 1 (If time available)

- Qualitative ranking factors and detailed assessment guidelines
- Verification / demonstration of applications

LEVEL 2

- Automated input for 4, 6, 8, and 12 leg geometries
- Storm loading algorithms (shallow water, 20 th Edition procedures, loading effects)
- Element capacity modifications (joints, local wave forces, deck leg P-∆, leg capacity, pile axial failure mode, biases)
- Damaged elements (holes, dents, cracks), and repaired elements (grouted)
- Reliability analysis
- Verification / demonstration of applications

PROJECT SCHEDULE REVIEW 2 years

May 1993 - April 1994

- LEVEL 2 6, 8, 12 leg geometry (Completed)
- LEVEL 2 Element capacity modifications (Completed)
- LEVEL 2 Verification cases (Completed)
- LEVEL 2 Loading modifications (<u>Started</u>)

May 1994 - April 1995

- LEVEL 1 Ranking factors & assessment guidelines (<u>If time available</u>)
- LEVEL 2 Damaged & repaired elements (<u>Started</u>)
- LEVEL 1 & 2 Verification cases & documentation (Started)
- LEVEL 2 Reliability analysis (<u>Started</u>)
- Project final report & software documentation

DELIVERABLES

- #1 (Level 1 and) Level 2 PC code (source, IBM 486) theory, user, and applications manuals
- #2 Engineering reports

 background, approaches, analytical procedures, verifications
- #3 Project meetings (every 6 months)
 meeting notes project progress

PLATFORM REASSESSMENT & REQUALIFICATION PROCESS

LEVEL 2 RSR 'SIMPLIFIED ANALYSES'

PROJECT PROGRESS & STATUS

- A Review of Past Developments
- Improved Axial Compression Capacity Formulation
- Bending Moment Resistance of Jacket Legs
- Damged and Repaired Members
- Simplified Probabilistic Failure Analysis

STORM LOADINGS

Near-surface
Wave Crest

Wave Force

Wave Force

Ut

Wave Force

Without Surface
Effects

Storm surge + tide

Mean water level

Jacket

Sea Floor

PLATFORM CAPACITIES

OUTPUT

IMPROVED AXIAL CAPACITY FORMULATION ORIGINALLY PROPOSED APPROACH

EQUILIBRIUM AT COLLAPSE

$$P_{v}-2\frac{P_{y}}{\pi}\cos^{-1}\left(\frac{M_{v}+P_{v}\frac{\Delta}{1-\frac{P_{v}}{P_{E}}}}{M_{P}}\right)=0$$

$$P_{E} = \frac{\pi^{2} EA}{\left(\frac{K l}{r}\right)^{2}}$$

$$\Delta = \Delta_0 + \frac{5}{384} \frac{w l^4}{EI}$$

$$M_{w} = \frac{w l^2}{10}$$

IMPROVED AXIAL CAPACITY FORMULATION USFOS APPROACH

moment M/Mp

IMPROVED AXIAL CAPACITY FORMULATION IMPROVED SIMPLIFIED APPROACH

$$M_{xx} + \frac{P}{EI}M = -w - 8P \frac{\Delta_0}{l^2}$$

$$\xi = \frac{x}{l}$$
, $\varepsilon = l\sqrt{\frac{P}{EI}}$

$$M_{\xi\xi} + \varepsilon^2 M = -w l^2 - 8P \Delta_0$$

$$M(\xi) = \frac{\sin \varepsilon (1 - \xi)}{\sin \varepsilon} M(\xi = 0) + \frac{\sin \varepsilon \xi}{\sin \varepsilon} M(\xi = 1) + \frac{1}{\varepsilon^2} \left(\frac{\cos \varepsilon (0.5 - \xi)}{\cos \frac{\varepsilon}{2}} - 1 \right) \left(w \, \boldsymbol{l}^2 + 8P \, \Delta_0 \right)$$

IMPROVED AXIAL CAPACITY FORMULATION IMPROVED SIMPLIFIED APPROACH

EQUILIBRIUM AT COLLAPSE

$$M(\xi = 0.5) = -M(\xi = 0) = -M(\xi = 1) = M_{U}$$

$$M_{U} = \left(\frac{1}{1+2\frac{\sin \theta.5 \varepsilon}{\sin \varepsilon}}\right) \frac{1}{\varepsilon^{2}} \left(\frac{1}{\cos \frac{\varepsilon}{2}} - 1\right) \left(w l^{2} + 8 P_{U} \Delta_{\theta}\right)$$

$$\frac{M_{U}}{M_{P}}-\cos\left(\frac{\pi}{2}\frac{P_{U}}{P_{P}}\right)=0$$

IMPROVED AXIAL CAPACITY FORMULATION CALIBRATION TO API BUCKLING CURVE

$$w = 0$$

$$P_v = P_{cr}$$
 (API)

INITIAL OUT-OF-STRAIGHTNESS

$$\Delta_{0} = \frac{M_{P} \cos\left(\frac{\pi}{2} \frac{P_{cr}}{P_{P}}\right)}{\left(\frac{1}{1+2 \frac{\sin \theta.5 \varepsilon}{\sin \varepsilon}}\right) \frac{1}{\varepsilon^{2}} \left(\frac{1}{\cos \frac{\varepsilon}{2}} - 1\right) (8 P_{cr})}$$

END-ON					
METHOD	K	Delta0/L	M KIPS-FT	Pu KIPS	Pu/Pusfos
USFOS	_	0.16	137.66	607.50	1.00
ULSLEA	-	0.16	145.01	664.90	1.09
ULSLEA (API)	0.65	0.32	165.67	600.81	0.99

END-ON

BROADSIDE								
METHOD	К	Delta0/L %	M KIPS.FT	Pu KIPS	Pu/Pusfos			
USFOS	•	0.13	140.08	611.00	1.00			
ULSLEA	•	0.13	154.52	645.99	1.06			
ULSLEA (API)	0.65	0.31	179.16	570.32	0.93			

BROADSIDE

IMPROVED JACKET CAPACITY FORMULATION ORIGINAL APPROACH

VIRTUAL WORK

$$W^{(E)} = W^{(I)}$$

$$\mathbf{P}_{U} = \mathbf{P}_{BH} + \frac{2(\mathbf{M}_{J} + \mathbf{M}_{K})}{\mathbf{H}_{BAY}}$$

ORIGINAL APPROACH

$$M_J = M_K = 0$$

$$P_U = P_{BH}$$

IMPROVED JACKET CAPACITY FORMULATION IMPROVED APPROACH

$$M_{l} = M_{lo} - P_{lo} h_{lo} \leq M_{lo}$$

FOR EQUAL SPANS, CONSTANT MOMENT OF INERTIA AND LIMITING CASE OF RIGID SUPPORTS:

$$|\boldsymbol{M}_{2}| \leq 0.286 |\boldsymbol{M}_{1}|$$

OBJECTIVE:

TO DEVELOP SIMPLIFIED METHODS TO EVALUATE THE EFFECTS OF MEMBER DAMAGE AND REPAIR ON PLATFORM RESPONSE TO EXTREME LOADINGS

DAMAGE CLASSIFICATION:

- DENTS
- GLOBAL BENDING
- CORROSION
- FATIGUE CRACKED JOINTS

DAMAGED AND REPAIRED MEMBERS DENTS AND GLOBAL BENDING

Analytical methods

- Beam-column Analysis (Ellinas 1984, Chen 1987, Ricles et al. 1992, Loh 1993)
- Numerical Integration Methods (Kim 1992, Duan 1993)
- Non-linear Finite Element Method (FEM)

Ellinas' Approach

$$\sigma_{pd} = \sigma_{\gamma} \frac{D}{t} \left[\sqrt{\frac{16}{9} \delta_d^2 + \left(\frac{t}{D}\right)^2} - \frac{4}{3} \delta_d \right]$$

$$\delta_d = \frac{d_d}{D}$$

$$\lambda_d = \frac{L}{r_d} - 0.2\pi \sqrt{\frac{E}{\sigma_Y}}$$

$$\frac{1}{\sigma_{e}}\sigma_{ud}^{2} - \left[1 + \alpha \lambda_{d} + \frac{A_{e}e_{d}}{Z_{d}} + \frac{f_{y}}{\sigma_{e}}\right]\sigma_{ud} + f_{y} + \sigma_{pd}\frac{A_{d}e_{d}}{Z_{d}} = 0$$

Loh's Unity Check Equations

Dent-Section Capacities and Properties

$$\frac{P_{d}}{P_{d}} = \frac{A_{d}}{A_{d}} = exp\left(-\theta.08\frac{dd}{t}\right) \ge 0.45 \qquad , \qquad \frac{M_{d}}{M_{d}} = \frac{I_{d}}{I_{d}} = exp\left(-\theta.06\frac{dd}{t}\right) \ge 0.55$$

Strength Check

$$UC = \frac{P}{P_{ud}} + \sqrt{\left(\frac{M-1}{M_{ud}}\right)^{\alpha} + \left(\frac{M*}{M_{u}}\right)^{2}} \le 1.0$$

$$UC = \frac{P}{P_{ud}} + \sqrt{\left(\frac{M+1}{M_{u}}\right)^{2} + \left(\frac{M*}{M_{u}}\right)^{2}} \le 1.0$$

Stability Check

$$UC = \frac{P}{P_{crd}} + \sqrt{\frac{M - \frac{P}{P_{Ed}} M_{ud}}{1 - \frac{P}{P_{Ed}} M_{ud}}} + \frac{M^*}{\left(1 - \frac{P}{P_{E}}\right)M_{u}} \le 1.0$$

$$UC = \frac{P}{P_{crd}} + \sqrt{\frac{M + \frac{M^*}{1 - \frac{P}{P_{Ed}} M_{ud}}}{1 - \frac{P}{P_{Ed}} M_{ud}}} + \frac{M^*}{\left(1 - \frac{P}{P_{E}}\right)M_{u}} \le 1.0$$

$$\frac{P_{crd}}{P_{crd0}} + \frac{P_{crd} \Delta Y}{\left(1 - \frac{P_{crd}}{P_{Ed}}\right)M_{ud}} = 1.0$$

Sensitivity Analysis of Ellinas' vs Loh's Formulation

A Comparison Between Experimental and Predicted Capacities

TEST	D (IN)	t (IN)	L (IN)	Sy (KSI)	E (KSI)	dd/D (%)	delta/L (%)	e/L (%)
A1	2.50	0.08	84.63	33.06	29145		0.02	
A2	2.50	0.08	84.63	33.21	30160	·	0.03	0.46
A3	2.50	0.08	84.63	32.77	28710	0.046	0.55	<u> </u>
B3	3.13	0.07	84.63	28.71	31030	0.08	0.5	
CI	4.00	0.07	84.63	30.60	29145		0.05	
C2	4.00	0.07	84.63	41.18	29870		0.05	0.46
ន	4.00	0.07	84.63	33.79	28565	0.034	0.04	0.40
Fl	16.02	0.39	305.24	44.23	28710	0.00-1	0.07	
F2	15.98	0.39	305.24	42.49	31030	0.124	0.18	

Test	dd/D	delta/L (%)	e/L (%)	Ptest (KN)	BCDENT (KN)	(KN)	ELLINAS (KN)	RICLES (KN)
	1							
<u> </u>	.	0.02		78.10	76.50	63.46	60.94	
A2	ļ	0.03	0.46	46.00	41.60	38.86	41.88	
A3	0.05	0.55		44.20	43.80	33.68	28.23	
B 3	0.08	0.50		43.30	41.50	35.97	25.04	43.96
C1		0.05		121.00	104.80	95.37	96.48	119.66
C2		0.05	0.46	89.40	97.10	90.66	97.84	117.00
C3	0.03	0.04		95.70	101.90	93.61	68.85	86.00
F1		0.07		3238.70	3509.90	3160.30	3192.10	3862.30
F2	0.12	0.18		2056.90	2031.70	1962.40	1068.00	2051.40

A Comparison Between Experimental and Predicted Capacities

Sensitivity Analyses and Conclusions

- The residual strength decreases significantly as the dent depth increases.
- Column strength is more sensitive to local denting damage when slenderness parameter λ is small.
- For a given dent depth, the analyses show a decrease in residual strength for members with higher D/t ratio.
- There is negligible conservatism in assuming a mid-length dent location for any practical dent within the middle-half section of a members effective length.
- Lateral loadings, such as those caused by wave forces, can significantly affect dented brace capacity.
- Ricles (1993): DENTA (developed by Taby 1988), Loh's interaction equation, numerical integration based on M-P-Φ relationships, and the non-linear FEM are able to predict the residual capacity of the test members reasonably well.

PROBABILISTIC FAILURE ANALYSIS Objective and Background

Objective:

To develop a reliability based level 2 screening procedure to identify critical platforms and their potential failure modes

Background:

$$P_{f}|H = 1 - \Phi \left(\frac{ln\left(\frac{R_{u}}{S|H}\right)}{\sqrt{\sigma_{lnR}^{2} + \sigma_{lnS}^{2} - 2\rho\sigma_{lnR}\sigma_{lnS}}} \right)$$

PROBABILISTIC FAILURE ANALYSIS FOSM Based Component and System Reliability

$$M = \ln R - \ln S$$

$$U = \frac{\left(M - \mu_{M}\right)}{\sigma_{M}}$$

$$P_f = CDF(U)$$

assuming <u>lognormal distribution</u> for loads and capacities the <u>exact</u> reliability index can be given as:

$$\beta = \frac{\mu_{M}}{\sigma_{M}}$$

$$\mu_{M} = ln \left(\frac{\mu_{R}}{\mu_{S}} \sqrt{\frac{I + V_{S}^{2}}{I + V_{R}^{2}}} \right)$$

$$\sigma_{M}^{2} = ln(1 + V_{R}^{2}) + ln(1 + V_{S}^{2}) - 2ln(1 + \rho_{RS}V_{R}V_{S})$$

$$P_f = \Phi(-\beta)$$

Series System:

$$max P_{fi} < P_{fs} < \sum_{i} P_{fi}$$

PROBABILISTIC FAILURE ANALYSIS

Uncertainty in Loading

WAVE LOADING:

$$S_H = K_H H^{\alpha}$$

Drag force dominated structure:

$$S_H = K_d K_u H^2$$

Professor Bea:

x	σ_{lnx}	$BIAS(B_{\chi})$	σ_{lnBx}
K_{u}	0.1	0.41	0.47
K _d	0.1	1.67	0.23
Hmax (G.O.M)	0.3	1.1	0.13

PROBABILISTIC FAILURE ANALYSIS

Uncertainty in Component Capacities

Deck Capacity:

$$\mu_{RD} = \mu_{Mcr} \cos[(\pi Q / 2n \mu_{Pcrl})](2n - QL^2 / 6EI)/L$$

$$\sigma_{RD} = [\sigma^2_{Mcr}(\delta_{RD}/\delta_{Mcr})^2 + \sigma^2_{Pcrl}(\delta_{RD}/\delta_{Pcrl})^2 + 2\sigma_{Mcr}\sigma_{Pcrl} (\delta_{RD}/\delta_{Mcr})(\delta_{RD}/\delta_{Pcrl})]^{1/2}$$

where

$$\delta_{RD}/\delta_{Mcr} = \cos[(\pi Q / 2n \, \mu_{Pcrl})](2n - QL^2 / 6EI)/L$$

$$\begin{split} \delta_{RD}/\delta_{Pcrl} &= (\pi Q \mu_{Mcr} / 2n \, (\mu_{Pcrl})^2) \, sin[(\pi Q / 2n \, \mu_{Pcrl})] \\ &\qquad (2n - QL^2 / \, 6EI)/L \end{split}$$

$$V_{Mcr} = 0.106$$
, $V_{Pcrl} = 0.117$

• *VMcr*, *VPcrl* are reported to be constant over the entire range of practical values of Et/fyD and D/t respectively.

Uncertainty in Component Capacities

Jacket Bay Capacity:

$$\mu_{RJi} = \sum \alpha_i \mu_{Ri} + \mu_{RL}$$

$$\sigma_{RJi} = [\sum (\alpha_i \sigma_{Ri})^2 + \sum \alpha_i \alpha_j \sigma_{Ri} \sigma_{Rj} + (B_{FL} \sigma_{RL})^2]^{1/2}$$

$$R_i = f(\lambda)$$

$$\lambda = (1/\pi) (fy/E)^{0.5} (KL/r)$$

λ	0.4	0.6	0.8	1.0	1.2	1.4
V_{R_i}	0.099	0.100	0.106	0.119	0.150	0.212

Uncertainty in Component Capacities

Foundation Capacity:

Axial capacity:

$$\mu_{RFa} = \mu_q A_P + \mu_f A_S$$

Axial Pile Capacity in	Bias	C.O.V.
Sand	0.9	0.47 - 0.56
Clay	1.3 - 3.7	0.32 - 0.53

Lateral capacity in clay:

$$\mu_{RFI} = 1/2[-27 D^2 \mu_{Su} + (27 D^2 \mu_{Su})^2 + 144 \mu_{Su} D$$

$$(\mu_{fy} - Q/nA) Z]^{0.5} + \mu_{RL}$$

Lateral capacity in sand:

$$\mu_{RFI} = 2.382 ((\mu_{fy} - Q/A_P) Z)^{2/3} (\mu_{\gamma} D \tan^2(45 + \mu_{\phi/2}))^{1/3} + \mu_{RL}$$

Lateral Capacity in	Bias	C.O.V.
Clay	0.92	0.20
Sand	0.81	0.21

Example Application

PAR2	3.49	0.11
PARI	0.33	28.9
OHm (feet)	11.7	11.4
μ _{Hm} (feet)	34.5	34.0
$f_{Hm}(h)$	Lognormal	Type I largest

END-ON	SHEAR	BIAS	C.O.V.	RESIST.	BIAS	C.O.V.	FOSM		FORM	SORM
LOADING	(KIPS)			(KIPS)			9	ĸ	80	60.
DECK LEGS	120	0.83	1.03	2606	6 .	0.11	422	1.20E-05	4.10	4.10
JACKET										
8AY1	424	0.83	1.03	1954	1.00	0.07	2.43	7.51E-03	2.29	229
BAY2	499	0.83	1.03	2046	1.00	0.10	877	1.135-02	2.12	2.14
BAY3	515	0.83	1.03	2360	1.00	0.15	2.39	8.54E-03	2.25	228
BAY4	518	0.83	1.03	2538	1.00	0.20	5773	7.62E-03	2.28	2.32
BAYS	520	0.83	1.03	2892	8.	0.26	2.51	6.02E-03	2.38	2.43
FOUNDATION										
LATERAL	520	0.83	1.03	7200	0.81	0.53	2.84	1.96E-03	2.85	2.85
AXIAL	856	0.83	1.03	4063	1.5	0.31	2.74	3.12E-03	2.70	2.70

Bimodal Bounds	Lower	Upper
	Bound	Bound
*	0.038	0.056
β	1.78	1.59

Summary and Conclusions

- A simplified procedure is presented to perform structural reliability analysis of conventional, steel jacket, offshore platforms, which can be used in the process of reassessment and requalification of older platforms.
- The analysis is based on a first order second moment approach.
- It is assumed that the loads and capacities are lognormally distributed.
- The results from the simplified FOSM analysis are in good agreement with those gained from more sophisticated first order and second order reliability methods (FORM and SORM).

PROBABILISTIC FAILURE ANALYSIS Future Work

- Considering correlations between load and resistance
- Including the uncertainty associated with joint capacities
- Integrating the reliability analysis procedure in "ULSLEA"

Verification of Screening Methodologies for Use in Gulf of Mexico Platform Requalifications

Kenneth J. Loch

Project Objectives

- ◆ To further develop and verify the viability of Level 2 screening methods
- ◆ To utilize hurricane Andrew platform survival and failure experiences to help verify Level 4 non-linear analyses

Project Scope Jan. 94 - Dec. 94

- ♦ Amoco ST 161A
- **♦ PMB Benchmark**
- ♦ Chevron ST 151H
- ♦ Chevron ST 151K
- ◆ Report

Verification Case Study Status

- ◆ Amoco ST 161A completed
- ◆ PMB Benchmark completed
- ♦ Kerr McGee ST 34-2,3 completed
- ♦ Kerr McGee ST 34-4 completed
- ◆ Chevron ST 151H data available
- ◆ Chevron 151K data available
- ♦ Shell SP 62 data available
- ♦ Shell SS 274 data available
- ◆ Phillips SMI 76B data available
- ◆ Phillips NCI A data available
- ◆ others (Mobil, Unocal, Exxon)

Amoco ST 161A

General Description

- Eight leg drilling and production platform
- ◆ Designed by McDermott using 25-year Glenn storm (H=55 ft.)
- ♦ Installed in 118 ft of water in 1964
- Broadside and end-on framing battered at 1:8
- ◆ Cellar and main decks at +34 ft and +47 ft respectively

Platform Details

- No joint cans (0.5 in. jacket leg thickness)
- ◆ Gusset plates used for leg K-joints
- ♦ F_y = 43 ksi or 58 ksi
- ◆ 36 in. piles penetrate 165 ft of soft to stiff clay and 25 ft of dense sand
- ◆ Vertical braces range in size from 14 in. in the fourth (upper) bay to 20 in. in the first bay

Platform History

- ♦ 1972: First risk analysis performed
- ◆ 1973: Pile-leg annulus grouted as a result of assessment
- ◆ 1974: Hurricane Carmen
 - eye passed within 10 miles of platform
 - hindcast 58 ft wave, SE, no damage
- ◆ 1988: Risk analysis, all eight conductors removed, bottom deck cleared

Platform History Continued

- ◆ 1992: Hurricane Andrew
 - eye passed within 8 miles of platform
 - 60-64 ft waves, ESE
 - yielding in +10 ft K-joints, no grout
- ♦ 1992: Risk analysis and retrofits
 - 10% more load would cause collapse
 - conductor removal reduces loads by 20%
 - +10 ft K-joints grouted

Level 4 Analysis

- ♦ Static pushover analysis
- ♦ Utilized Amoco's 1992 USFOS model
- ♦ WAJAC generated hydrodynamic loads
- Broadside and end-on analyzed separately to match Level 2 approach

USFOS Model

- ♦ Only major structural members modeled
- Grouted pile/leg member used leg diameter (39 in.) and double the leg thickness (1.0 in.)
- Initial imperfection based on Chen's buckling curve for critical braces
- ◆ PMB PAR program developed non-linear springs, but T-Z and Q-Z modeled as equivalent linear springs
- ◆ Rigid joints assumed due to grout

Orientation

Isometric

Broadside Elevation

End-on Elevation

Loading Information

- **◆** Assumed marine growth = 1.5 in.
- ◆ Cd = 1.2
- ◆ Cm = 1.2
- ϕ wkf = 0.88
- ◆ Broadside loading
 - H = 64 ft, T = 13.3 sec.
 - In-line current = 31 in/sec, cbf = 0.80
- ◆ End-on loading
 - H = 72 ft, T = 14.6 sec
 - In-line current = 2.6 in/sec, cbf = 0.70

Loading Profiles

Broadside Force- Displacement History

Maximum base shear = 3,861 kips

Broadside Failure Progression

Broadside Critical Brace Axial Force History

Values normalized by plastic capacity

Broadside Critical Brace P-M Interaction

Values normalized by plastic capacity

End-on Force-Displacement History

Maximum base shear = 3,905 kips

End-on Failure Progression

End-on Critical Brace Axial Force History

Values normalized by plastic capacity

End-on Critical Brace P-M Interaction

Values normalized by plastic capacity

Comparison with Actual Platform Performance

- ◆ ST 161A survived 60-64 ft waves 15° off broadside during Andrew
- ◆ USFOS model predicts first member failure at 91% of load from 64 ft broadside wave
- Deck loads are very significant and hence loading is very sensitive to wave height and surge
- Imperfection and member orientation combination is realistic but conservative
- ◆ Conclusion: <u>USFOS model would</u> <u>predict survival during likely Andrew</u> <u>loading</u>

VERIFICATION CASE STUDIES

Level 2 Results (AMOCO'S ST161A)

BROADSIDE LOADING

H = 64 ft; T = 13.3 sec; Uc = 2.6 ft/sec

	Level 4 (SESAM)	Level 2 (ULSLEA)
Base shear (kips)	4,252	4,428
Jacket Load (kips)	2,510	2,686

BROADSIDE LOADING

VERIFICATION CASE STUDIES

Level 2 Results (AMOCO'S ST161A)

BROADSIDE LOADING

	Level 4 (USFOS)	Level 2 (ULSLEA)
Base shear at collapse		
(kips)	3,861	3,670

BROADSIDE LOADING

VERIFICATION CASE STUDIES

Level 2 Results (AMOCO'S ST161A)

END-ON LOADING

H = 72 ft; T = 14.6 sec; Uc = 0 ft/sec

	Level 4 (SESAM)	Level 2 (ULSLEA)
Base shear (kips)	3,487	3,814
Jacket Load (kips)	2,252	2,579

END-ON LOADING

VERIFICATION CASE STUDIES Level 2 Results (AMOCO'S ST161A)

END-ON LOADING

	Level 4 (USFOS)	Level 2 (ULSLEA)
Base shear at collapse	-	
(kips)	3,905	3,128

END-ON LOADING

PMB Benchmark Platform

General Description

- ◆ Four leg platform in Ship Shoal area
- ◆ Installed in 157 ft of water in 1970
- Broadside and end-on framing battered at 1:11
- ◆ Decks located at +33 ft, +43 ft, +56 ft and +71.5 ft
- ◆ Three 30 in. and one 48 in. conductors are located in northern half of platform
- ◆ Boatlandings on east and south sides

Platform Details

- Jacket is identical for both primary orthogonal directions
- ◆ Legs thickened at joint, 1.25 in. vs. 0.5 in.
- ♦ F_y = 43 ksi all members
- ◆ 36 in. piles penetrate 355 ft of soft to stiff clay and 28 ft of silty sand (at -197 ft)
- ◆ Vertical braces range in size from 16 in. in the seventh (upper) bay to 20 in. in the first bay

Level 4 Analysis

- ♦ Static pushover analysis
- ♦ WAJAC generated hydrodynamic loads
- Rigid and flexible foundation assumptions both analyzed

USFOS Model

- Only major structural members modeled
- ◆ Pile/leg annulus ungrouted, thus, jacket joints slaved transversely to pile members. Piles, jacket and deck legs rigidly connected at top
- Initial imperfection based on Chen's buckling curve for critical braces
- Non-linear soil springs developed using API guidelines (static)
- Rigid joints assumed due to thickened sections

Orientation

Isometric

Side Elevation

Loading Information

- ♦ Assumed marine growth = 1.5 in.
- ◆ Cd = 1.2
- ♦ Cm = 1.2
- ϕ wkf = 0.88
- ◆ Broadside loading
 - H = 67 ft, T = 14.3 sec.
 - In-line current = 37 in/sec, cbf = 0.80

Force-Displacement History

Maximum base shear =1,673 kips

Failure Progression

Compression T-Z and Q-Z Soil Spring Force History

Fixed Base Force-Displacement History

(Dynamic Pile Capacity Case)

Maximum base shear = 3,440 kips

Fixed Base Failure Progression

PMB Benchmark

Fixed Base Critical Brace Axial Force History

Values normalized by plastic capacity

Fixed Base Critical Brace P-M Interaction

Values normalized by plastic capacity

Research Plans for Next Three Months

- ◆ Analyze and document Chevron ST 151H and Chevron ST 151K
- ◆ Investigate sensitivity of Level 4 analysis results to input parameters:
 - F_y
 - vertical deck forces
 - soil spring assumptions (cyclic, static and dynamic)
- Document benefits and pitfalls of Level 4 analyses based on research experience
- ♦ Write final report

VERIFICATION CASE STUDIES

Level 2 Results (Benchmark Structure)

H = 67 ft; T = 14.3 sec; Uc = 3.1 ft/sec

	Level 4 (SESAM)	Level 2 (ULSLEA)
Base shear (kips)	2,656	3,055
Jacket Load (kips)	2,279	2,678

END-ON LOADING

STORM SHEAR / PLATFORM SHEAR CAPACITY (KIPS)

VERIFICATION CASE STUDIES

Level 2 Results (Benchmark Structure)

	Level 4 (USFOS)	Level 2 (ULSLEA)
Base shear at collapse		
with fixed base (kips)	3,440	3,212

END-ON LOADING

VERIFICATION CASE STUDIES

Level 2 Results (Benchmark Structure)

AXIAL PILE CAPACITY

VERIFICATION CASE STUDIES Summary

Case	Configuration	Wave	Level 2 Analysis		Level 4 Analysis		Ratio
*		Direction	Failure Mode	Base Shear (kips)	Fallure Mode	Base Shear (kips)	Base Shear USFOS/SCREEN (kips)
-	8 leg double battered K-braced	End-on Broadside	1st jacket bay 2nd jacket bay	2,860 (2,700) 2,900	1st jacket bay 2nd jacket bay	2,607 2,935	0.91 (0.97)* 1.01
7	8 leg double battered K-braced	End-on Broadside	1st jacket bay 1st jacket bay	3,128 3,670	1st jacket bay 1st jacket bay	3,905	1.25 1.05
က	4 leg double battered K-braced	End-on	4th , 5th and 6th jacket bays Foundation	3,212 1,955 (1,740)	5th and 6th jacket bays Foundation	3,440	1.07

*) Including the shear in jacket legs **) including the platform selfweight

Peter Young Graduate Student Researcher

and

Professor Robert Bea

Department of Civil Engineering University of California at Berkeley

7th October 1994

OBJECTIVE

Given two roughly identical wellhead protectors subjected to Hurricane Andrew storm shears, determine ability to predict the observed performance of the two structures:

- Wellheads Protector 2 and 3 (WP2/3) collapsed
- Wellhead Protector 4 (WP4) suffered no significant damage.

THREE APPROACHES TO DETERMINE RESPONSE

- Linear Elastic Analysis Using StruCAD*3D
 - Piles fixed ≈ 5 pile diameters below mudline
 - Approximate linear springs at mudline
 - Nonlinear soil-structure interaction along length of the piles
- Ultimate Limit State Limit Equilibrium Analysis (ULSLEA)
- Nonlinear Static Pushover Analysis Using Usfos
 - Piles pinned at mudline
 - Nonlinear Winkler soil springs

STRUCTURAL CHARACTERISTICS

- Wellheads Protector 2 and 3 (WP2/3)
 - 52' mean water depth (MWL)
 - Oriented -45° from true north
 - 2 exterior well caissons (36"ø)
- Wellhead Protector 4 (WP4)
 - 49' MWL
 - Oriented parallel to true north
 - 1 interior well caisson (36"ø)

3D ISOMETRIC OF WP2/3

3D ISOMETRIC OF WP4

SOIL CHARACTERISTICS

- Upper Layer of Weak Clays (to depth of 64')
 Shear Strengths = 0.31-0.50 ksf
- Intermediate Layer of Clays (64' to 172')
 Shear Strengths = 0.5-1.5 ksf
- Underlying Layer of Stiff Sands (below 172')
 Shear Strength = 2.0 ksf

WIND, WAVE AND CURRENT CHARACTERISTICS

- ABS wind profile with maximum velocity of 98 knots
- · 40' maximum wave height
 - 9.5 second wave period
 - Stream Function 9th Order wave theory
- Constant 6 ft/sec current over water depth
- Cd = 1.2 accounts for marine growth
- Maximum Surge and Tide of 3'

BS BASE STORM SHEAR VS. DISTANCE TO ORIGIN

BASE STORM SHEAR VS. TIME DURING ANDREW

3D DEFLECTED ISO OF WP2/3 Broadside Loading

3D DEFLECTED ISO OF WP2/3 End On Loading

3D DEFLECTED ISO OF WP4 Broadside Loading

3D DEFLECTED ISO OF WP4 End On Loading

WAVE KINEMATICS

Current with Mass Transport

Constant Current

WP2/3 ANALYSES

END-ON LOADING

STORM SHEAR / PLATFORM SHEAR CAPACITY (KIPS)

BROADSIDE LOADING

WP4 ANALYSES

END-ON LOADING

BROADSIDE LOADING

AXIAL PILE CAPACITIES

COMPARISON OF USFOS PINNED PILE ANALYSES

WP4 Global P-A

COMPARISON OF USFOS SOIL SPRING ANALYSES

WP2/3 Global P-Δ

WP4 Global P-Δ

Comparison of Storm Shears from Three Analyses

	WP2/3		WP4		
Analysis	EO	BS	EO	BS	
StruCad	1199	1299	1036	1088	
ULS 1	1218	1322	1000	1110	
ULS 2	1355	1474	1119	1244	
Usfos	1141	1233	1036	1071	

ULS 1 - ULSLEA with current mass transport

ULS 2 - ULSLEA without current mass transport

CAPACITY COMPARISON BETWEEN ULSLEA AND USFOS

Capacities

	WP2/3		WP4		
Analysis	EO	BS	EO	BS	
ULSLEA	1320	1521	1208	1363	
Usfos	919	1178	861	984	

Reserve Strength Ratios

	WP2/3		WP4	
Analysis	EO	BS	EO	BS
ULSLEA	0.974	1.032	1.080	1.096
Usfos	0.806	0.955	0.831	0.919

COMPARISON OF RESULTS

Dynamic Soil Spring Shear Capacities

	Wells 2 and 3		Well 4		
Loading	LF	LF Shear		Shear	
EO	1.088	1242	1.205	1249	
BS	1.289	1590	1.333	1427	

Andrew Storm Shear to Capacity Comparison

	Time	St	torm		Below (Capacity
	CDT	EO	BS	Total	R main	R tot
WP2/3	2100	1070	194	1087	-13.8%	-12.5%
WP4	2000	392	817	906	-42.7%	-36.5%
WP4 Br	2100	430	752	867	-47.3%	-39.2%

CONCLUSIONS

- Pile Foundation Capacities of Primary Concern
 - Low stiffness and inherent lack of redundancy is not compensated by lateral soil resistance
 - Piles form soft-story failure mechanism
 - Caissons prevent full formation of mechanism and induce pile pullout
- · Likely Failure of WP2/3 Due To:
 - Additional caisson stiffness induces pile pullout quicker
 - Principal storm wave loadings parallel to end on structural orientation
- Likely Survival of WP4 Due To:
 - Lower storm shears due to lower water depth and wave breaking
 - Principal storm wave loadings roughly between end on and broadside directions

PLANS

October 1994 - April 1995

- Analyze Shell SP62 Platform Using Usfos
- Analyze Phillips/Mobil/Unocal/Exxon Platforms
 Using Usfos
- Analyze Dynamic Response of Single Well Caissons to Hurricane Andrew
- Perform Parametric Analyses
- Document Results

PLANS FOR NEXT SIX MONTHS AND MEETING

- Finalizing the <u>verification case studies</u>
- Finalizing the work on <u>Jacket-bays' lower and upper-bound</u> capacities
- Finalizing the <u>damaged and repaired element algorithms</u> (corrosion, holes, joint cracks) and integrating them in SCREEN
- Finalizing and integrating the <u>reliability analysis procedures</u> in **SCREEN**
- Further automating the input and developing a graphical input check for SCREEN
- Finalizing SCREEN (completion, calibration, and revision) based on the latest research developments and sponsors' suggestions
- Next meeting proposed during April 1995